ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Игра происходит на квадрате клетчатой бумаги 9×9. Играют двое, ходят по
очереди. Начинающий игру ставит в свободные клетки крестики, его партнер –
нолики. Когда все клетки заполнены, подсчитывается количество К строк и столбцов,
в которых крестиков больше, чем ноликов,и количество Н строк и столбцов, в которых ноликов больше, чем крестиков. Разность В = К – Н считается выигрышем игрока, который начинает. Найдите такое значение B, что |
Задача 64508
УсловиеВ сумме + 1 + 3 + 9 + 27 + 81 + 243 + 729 можно вычеркивать любые слагаемые и изменять некоторые знаки перед оставшимися числами с "+" на "–". Маша хочет таким способом сначала получить выражение, значение которого равно 1, затем, начав сначала, получить выражение, значение которого равно 2, затем (снова начав сначала) получить 3, и так далее. До какого наибольшего целого числа ей удастся это сделать без пропусков? РешениеКаждое целое число можно записать в виде суммы степеней тройки с коэффициентами 0, 1 и –1 вместо обычных 0, 1 и 2 (см. задачу 30840). Следовательно, Маша сумеет получить все целые числа от 1 до 1 + 3 + 9 + 27 + 81 + 243 + 729 = 1093. ОтветДо числа 1093 (включительно). Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке