|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Внутри равнобокой трапеции ABCD с основаниями BC и AD расположена окружность ω с центром I, касающаяся отрезков AB, CD и DA. Описанная окружность треугольника BIC вторично пересекает сторону AB в точке E. Докажите, что прямая CE касается окружности ω. Квадрат разбит на n² ≥ 4 прямоугольников 2(n – 1) прямыми, из которых n – 1 параллельны одной стороне квадрата, а остальные n – 1 – другой. Докажите, что можно выбрать 2n прямоугольников разбиения таким образом, что для каждых двух выбранных прямоугольников один из них можно поместить в другой (возможно, предварительно повернув). Назовём непустое (конечное или бесконечное) множество A, состоящее из натуральных чисел, полным, если для любых натуральных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества натуральных чисел. |
Задача 60555
УсловиеПусть представление числа n в двоичной системе выглядит следующим образом: n = 2e1 + 2e2 +...+ 2er (e1 > e2 > ... > er ≥ 0). РешениеСмотри решение задачи 60556. Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|