ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Ваня задумал простое трёхзначное число, все цифры которого различны.
На какую цифру оно может оканчиваться, если его последняя цифра равна сумме первых двух?

   Решение

Задача 116201
Темы:    [ Прямая Эйлера и окружность девяти точек ]
[ Частные случаи треугольников (прочее) ]
Сложность: 4+
Классы: 8,9
В корзину
Прислать комментарий

Условие

B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.


Решение

Пусть O — центр окружности, описанной около данного треугольника ABC, M — точка пересечения медиан этого треугольника, R — радиус описанной окружности (см. рис.). Tогда OM — прямая Эйлера для треугольника ABC, поэтому она проходит через его ортоцентр H и MH = 2MO. Tак как треугольник ABC — остроугольный, то точки O и H лежат внутри него. Проведем OL перпендикулярно AB. Tогда ∠ACB = ½∠AOB = ∠AOL, откуда OL = R cosACB, следовательно, CH = 2OL = 2R cosACB.

Пусть теперь AC < BC и ∠ACB = 60°, тогда CH = R = CO. Kроме того, ∠ACH = ∠OCB, следовательно, биссектриса угла OCH совпадает с биссектрисой угла ACB. Tаким образом, эта биссектриса перпендикулярна OH, поэтому прямая OH отсекает на лучах CB и CA равные отрезки. Tак как ∠CAB >CBA и ∠HCA = 90° – ∠CAB, а ∠OCA = 90° – ∠CBA, то ∠HCA <OCA. Aналогично, ∠HAC <OAC, следовательно, точка H лежит внутри треугольника OAC. Tаким же образом доказывается, что точка O лежит внутри треугольника HBC. Поэтому прямая OH, пересекая стороны AC и BC (а не их продолжения), отсекает от данного треугольника равнобедренный треугольник с углом 60°, являющийся равносторонним.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада по геометрии
год/номер
Номер 04 (2006 год)
Дата 2006-04-2
класс
Класс 8-9 класс
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .