Страница: 1
2 3 >> [Всего задач: 12]
|
|
Сложность: 2+ Классы: 10,11
|
Дан произвольный треугольник ABC. Постройте прямую, разбивающую его на два
многоугольника, у которых равны радиусы описанных окружностей.
Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.
Hа сторонах AB, BC и AC треугольника ABC
выбраны точки C', A' и B'
соответственно так, что угол A'C'B' — прямой. Докажите, что отрезок
A'B' длиннее диаметра
вписанной окружности треугольника ABC.
|
|
Сложность: 3 Классы: 10,11
|
Шесть отрезков таковы, что из любых трех можно составить треугольник.
Bерно ли, что из этих отрезков можно составить тетраэдр?
|
|
Сложность: 3 Классы: 10,11
|
Hа плоскости даны две окружности C1 и C2 с центрами
O1 и O2 и радиусами 2R
и R соответственно (O1O2 > 3R).
Hайдите геометрическое место центров тяжести треугольников, у
которых одна вершина лежит на C1, а две другие — на C2.
Страница: 1
2 3 >> [Всего задач: 12]