ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.

Вниз   Решение


Решить систему
   x1 + 2x2 + 2x3 + 2x4 + 2x5 = 1,
   x1 + 3x2 + 4x3 + 4x4 + 4x5 = 2,
   x1 + 3x2 + 5x3 + 6x4 + 6x5 = 3,
   x1 + 3x2 + 5x3 + 7x4 + 8x5 = 4,
   x1 + 3x2 + 5x3 + 7x4 + 9x5 = 5.

ВверхВниз   Решение


Играют двое; один из них загадывает набор из целых чисел ( x1, x2,..., xn) -- однозначных, как положительных, так и отрицательных. Второму разрешается спрашивать, чему равна сумма a1x1 + ... + anxn, где (a1...an) -- любой набор. Каково наименьшее число вопросов, за которое отгадывающий узнает задуманный набор?

ВверхВниз   Решение


Найдите наибольшее значение функции y = 6x-6tgx-7 на отрезке [0;] .

Вверх   Решение

Задача 64596
Темы:    [ Упорядочивание по возрастанию (убыванию) ]
[ Принцип крайнего (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Есть тридцать карточек, на каждой написано по числу: на десяти карточках – a, на десяти других – b, и на десяти оставшихся – c (числа a, b, c все разные). Известно, что к любым пяти карточкам можно подобрать еще пять так, что сумма чисел на этих десяти карточках будет равна нулю. Докажите, что одно из чисел a, b, c равно нулю.


Решение

Пусть  a < b < c.  Отметим на числовой оси всевозможные суммы чисел на пяти карточках. Для каждой из них отмечена и противоположная, поэтому отмеченные точки расположены симметрично относительно нуля. В частности, противоположны наибольшая (5с) и наименьшая (5а) суммы, значит,
5a + 5c = 0,  то есть  c = – a.  Противоположны и суммы, ближайшие к “крайним”:  (4a + b) + (4c + b) = 0.  Отсюда следует, что  b = 0.

Замечания

баллы: 8-9 кл. – 5, 10-11 кл. – 4

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант весенний тур, тренировочный вариант, 8-9 класс
задача
Номер 3
олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант весенний тур, тренировочный вариант, 10-11 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .