ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Разборов А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 97945

Темы:   [ Доказательство от противного ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4-
Классы: 7,8,9

2000 яблок лежат в нескольких корзинах. Разрешается убирать корзины и вынимать яблоки из корзин.
Доказать, что можно добиться того, чтобы во всех оставшихся корзинах было поровну яблок, а общее число яблок было не меньше 100.

Прислать комментарий     Решение

Задача 97802

Темы:   [ Системы точек и отрезков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.

Прислать комментарий     Решение

Задача 98060

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Неравенство Коши ]
[ Неравенства с площадями ]
Сложность: 4-
Классы: 8,9

На квадратный лист бумаги со стороной a посадили несколько клякс, площадь каждой из которых не больше 1. Оказалось, что каждая прямая, параллельная сторонам листа, пересекает не более одной кляксы. Докажите, что суммарная площадь клякс не больше a.

Прислать комментарий     Решение

Задача 97994

Темы:   [ Обход графов ]
[ Классическая комбинаторика (прочее) ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 9,10

В стране 1988 городов и 4000 дорог.
Докажите, что можно указать кольцевой маршрут, проходящий не более, чем через 20 городов (каждая дорога соединяет два города).

Прислать комментарий     Решение

Задача 98040

Темы:   [ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10

В прямоугольной таблице m строк и n столбцов  (m < n).  В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .