ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В парламенте некоторой страны две палаты, имеющие равное число депутатов. В голосовании по важному вопросу приняли участие все депутаты, причём воздержавшихся не было. Когда председатель сообщил, что решение принято с преимуществом в 23 голоса, лидер оппозиции заявил, что результаты голосования сфальсифицированы. Как он это понял?

Вниз   Решение


Коника задаётся в барицентрических координатах уравнением

p$\displaystyle \alpha$$\displaystyle \beta$ + q$\displaystyle \alpha$$\displaystyle \gamma$ + r$\displaystyle \beta$$\displaystyle \gamma$ = 0.

Докажите, что её центр имеет барицентрические координаты

$\displaystyle \bigl($r(p + q - r) : q(p + r - q) : p(r + q - p)$\displaystyle \bigr)$.


Вверх   Решение

Задача 30721
Темы:    [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Переплетчик должен переплести 12 одинаковых книг в красный, зелёный или синий переплеты. Сколькими способами он может это сделать?


Подсказка

Задача эвивалентна задаче о разложении 12 шаров по трём ящикам. См. задачу 30717 б).


Ответ

  способом.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 11
Название Комбинаторика-2
Тема Классическая комбинаторика
задача
Номер 035

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .