|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи По окончании шахматного турнира Незнайка сказал: "Я набрал на 3,5 очка больше, чем потерял". Могут ли его слова быть правдой? У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.
Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью. |
Задача 58203
УсловиеДокажите, что при n ≠ 4 правильный n-угольник нельзя расположить так, чтобы его вершины оказались в узлах целочисленной решетки.РешениеДля n = 3 и n = 6 утверждение вытекает из предыдущей задачи, поэтому будем в дальнейшем считать, что n ≠ 3, 4, 6. Предположим, что существуют правильные n-угольники с вершинами в узлах целочисленной решетки (n ≠ 3, 4, 6). Среди всех таких n-угольников можно выбрать тот, у которого длина стороны наименьшая. (Для доказательства достаточно заметить, что если a — длина отрезка с концами в узлах решетки, то a =Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|