ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Внутри выпуклого стоугольника выбрано k точек, 2 k 50 . Докажите, что можно отметить 2k вершин стоугольника так, чтобы все выбранные точки оказались внутри 2k -угольника с отмеченными вершинами.

Вниз   Решение


Найдите наибольшее значение функции y = 32tgx-32x+8π +6 на отрезке [-;] .

ВверхВниз   Решение


Дан прямоугольник ABCD. Найдите ГМТ X, для которых  AX + BX = CX + DX.

Вверх   Решение

Задача 56533
Тема:    [ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Найдите длину стороны шестиугольника, если длины сторон треугольника равны a, b и c.


Решение

Пусть сторона шестиугольника равна x. Из рассмотрения подобных треугольников получаем равенство  ax/c + x + ax/b = a.


Ответ

abc/ab+bc+ac.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 7
Название Задачи для самостоятельного решения
Тема Подобные треугольники (прочее)
задача
Номер 01.077

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .