|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM. |
Задача 57938
УсловиеНа сторонах AB и AC треугольника ABC внешним образом построены правильные треугольники ABC' и AB'C. Точка M делит сторону BC в отношении BM : MC = 3 : 1; K и L — середины сторон AC' и B'C. Докажите, что углы треугольника KLM равны 30o, 60o и 90o.РешениеПустьИсточники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|