ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждый день Фрёкен Бок испекает квадратный торт размером 3×3. Карлсон немедленно вырезает себе из него четыре квадратных куска размером 1×1 со сторонами, параллельными сторонам торта (не обязательно по линиям сетки 3×3). После этого Малыш вырезает себе из оставшейся части торта квадратный кусок со сторонами, также параллельными сторонам торта. На какой наибольший кусок торта может рассчитывать Малыш вне зависимости от действий Карлсона?

   Решение

Задача 60613
Темы:    [ Цепные (непрерывные) дроби ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Разложите в цепные дроби числа:
  а) ;   б) ;   ½ + .


Решение

  а)       Следовательно, дальше двойка будет повторяться.

  б)       Следовательно,   + 1 = [2; (1, 2)].


Ответ

а)  [1; (2)];   б)  [1; (1, 2)];   в)  [3; (6, 1, 6, 5)].

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 5
Название Цепные дроби
Тема Цепные (непрерывные) дроби
задача
Номер 03.161

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .