|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников? Найдите корень уравнения log2(7+x) = 3 . |
Задача 98083
УсловиеВ ряд стоят 30 сапог: 15 левых и 15 правых. Докажите, что среди некоторых десяти подряд стоящих сапог левых и правых поровну. РешениеОбозначим через Li число левых сапог из десяти, занимающих с i-го по (i+9)-е места. Тогда L1 + L11 + L21 = 15. Если одно из чисел L1, L11, L21 равно 5, то мы нашли искомую десятку. Иначе одно из них больше 5, а какое-то – меньше 5. Но Li + 1 может отличаться от Li не более чем на 1. Значит, Lk = 5 при некотором k. Это и даст искомую десятку. Замечания3 балла Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|