|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Серёжа выбрал два различных натуральных числа a и b. Он записал в тетрадь четыре числа: a, a + 2, b и b + 2. Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске? |
Задача 32025
УсловиеИз бумаги склеено цилиндрическое кольцо, ширина которого равна 1, а длина по окружности равна 4. Можно ли не разрывая сложить это кольцо так, чтобы получился квадрат площади 2?РешениеОтметим на одной кромке кольца диаметрально противоположные точки A и C, а на другой — диаметрально противоположные точки B и D, повернутые относительно A и C на 90. На рис. а) изображен прямоугольник, получаемый из кольца разрезанием по образующей цилиндра . Сложив цилиндр по линиям AB, BC, CD и DA, получим квадрат площади 2 (рис.б).ОтветДа, можно.ЗамечанияИсточник решения: книга "В.О.Бугаенко. Турниры им. Ломоносова. Конкурсы по математике. МЦНМО-ЧеРо. 1998".Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|