ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Верны ли утверждения:
  а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.

   Решение

Задача 64466
Темы:    [ Четырехугольник: вычисления, метрические соотношения. ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

а) Дан выпуклый четырёхугольник ABCD. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что  r4 > 2r3?

б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что  r2 > 2r1?


Решение

  а) Пусть для определенности  r4 = rABC.  Середина K диагонали AC лежит в одном из треугольников ABD, CBD, скажем, в треугольнике ABD. Тогда треугольник AKL, где L – середина AB, целиком содержится в треугольнике ABD, поэтому  rABC = 2rAKL < 2rABD ≤ 2r3.

  б) Пусть  r = r1  – радиус вписанной окружности треугольника ABE. Так как диаметры вписанных окружностей треугольников BCE, ADE меньше высот этих треугольников, совпадающих с высотами ha, hb треугольника ABE, достаточно доказать, что одна из этих высот не превосходит 4r. Пусть  AE ≥ BE.  Тогда полупериметр треугольника  p < AE + BE ≤ 2AE  и  


Ответ

а), б) Не может.

Замечания

Если константу 2 заменить на меньшую, то в обоих пунктах ответ изменится на положительный.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2013
год
Год 2013
задача
Номер 11

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .