ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны 32 одинаковые по виду монеты. Известно, что среди них есть ровно две фальшивые, которые отличаются от остальных по весу (настоящие монеты равны по весу, и фальшивые монеты также равны по весу). Как разделить все монеты на две равные по весу кучки, сделав не более четырёх взвешиваний на чашечных весах без гирь?

   Решение

Задача 76455
Тема:    [ Разложение на множители ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Разложить на целые рациональные множители выражение  a10 + a5 + 1.


Решение

См. задачу 61005 в).


Ответ

(a² + a + 1)(a8a7 + a5a4 + a³ – a + 1).

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 5
Год 1939
вариант
Тур 2
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .