ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 76458

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9

Найти остаток от деления на 7 числа  1010 + 10102 + 10103 + ... + 101010.

Прислать комментарий     Решение

Задача 35756

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Биссектриса делит дугу пополам ]
Сложность: 3+
Классы: 8,9,10

Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины.
Прислать комментарий     Решение


Задача 76450

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 3+
Классы: 9,10

Решить систему уравнений:
   3xyz – x³ – y³ – z³ = b³,
   x + y + z = 2b,
   x² + y² + z² = b².

Прислать комментарий     Решение

Задача 76453

Темы:   [ Иррациональные уравнения ]
[ Методы решения задач с параметром ]
[ Квадратные уравнения и системы уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
Сложность: 4-
Классы: 9,10,11

Решить уравнение   = x.

Прислать комментарий     Решение

Задача 76455

Тема:   [ Разложение на множители ]
Сложность: 4-
Классы: 8,9

Разложить на целые рациональные множители выражение  a10 + a5 + 1.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .