ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В маленьком городе только одна трамвайная линия. Она кольцевая, и трамваи ходят по ней в обоих направлениях. На кольце есть остановки Цирк, Парк и Зоопарк. От Парка до Зоопарка путь на трамвае через Цирк втрое длиннее, чем не через Цирк. От Цирка до Зоопарка путь через Парк вдвое короче, чем не через Парк. Какой путь от Парка до Цирка – через Зоопарк или не через Зоопарк – короче и во сколько раз?

Вниз   Решение


Дан треугольник ABC. В нём R – радиус описанной окружности, r – радиус вписанной окружности, a – длина наибольшей стороны, h – длина наименьшей высоты. Докажите, что  R/r > a/h.

ВверхВниз   Решение


Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна?

Вверх   Решение

Задача 64636
Темы:    [ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 10,11
В корзину
Прислать комментарий

Условие

Автор: Храмцов Д.

Все клетки квадратной таблицы n×n пронумерованы в некотором порядке числами от 1 до n². Петя делает ходы по следующим правилам. Первым ходом он ставит фишку в любую клетку. Каждым последующим ходом Петя может либо поставить новую фишку на какую-то клетку, либо переставить фишку из клетки с номером a ходом по горизонтали или по вертикали в клетку с номером большим, чем a. Каждый раз, когда фишка попадает в клетку, эта клетка немедленно закрашивается; ставить фишку на закрашенную клетку запрещено. Какое наименьшее количество фишек потребуется Пете, чтобы независимо от исходной нумерации он смог за несколько ходов закрасить все клетки таблицы?


Решение

  n фишек достаточно. Действительно, на каждую строку хватит одной фишки: можно поставить её в клетку строки с минимальным номером, а затем обойти все клетки строки в порядке возрастания номеров.
  Покажем, что меньшего числа фишек может и не хватить. Для этого пронумеруем клетки одной диагонали числами 1, 2, ..., n, а остальные клетки нумеруем произвольно. Тогда одна фишка не сможет побывать на двух клетках этой диагонали: если фишка встала на одну её клеток, то следующим ходом она обязана будет пойти на клетку с номером, большим n, и значит, после этого не сможет вернуться на диагональ. Поскольку на каждой клетке диагонали должна побывать фишка, Пете придётся использовать не менее n фишек.


Ответ

n фишек.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2013-2014
этап
1
Вариант 3
класс
Класс 11
1
задача
Номер 11.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .