ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если треугольник не тупоугольный,
то
ma + mb + mc A – вершина правильного звёздчатого пятиугольника. Ломаная AA'BB'CC'DD'EE' является его внешним контуром. Прямые AB и DE продолжены до пересечения в точке F. Докажите, что многоугольник ABB'CC'DED' равновелик четырёхугольнику AD'EF. |
Задача 64637
УсловиеПлоскость α пересекает рёбра AB, BC, CD и DA треугольной пирамиды ABCD в точках K, L, M и N соответственно. Оказалось, что двугранные углы Решение Обозначим через A', B', C', D' проекции вершин A, B, C, D на плоскость α. Пусть X – произвольная точка на продолжении отрезка KL за точку K. Тогда Аналогично показывается, что A' лежит на внешней биссектрисе угла MNK. Применяя такие же рассуждения для точек B', C', D', получаем, что точки A', B', C', D' – пересечения внешних биссектрис соседних углов четырёхугольника KLMN. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке