|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Существуют ли такие натуральные числа a, b и c, что у каждого из уравнений ax² + bx + c = 0, ax + bx – c = 0, ax² – bx + c = 0, ax² – bx – c = 0 оба корня – целые? |
Задача 56858
УсловиеТочки D и E делят стороны AC и AB правильного треугольника ABC в отношениях AD : DC = BE : EA = 1 : 2. Прямые BD и CE пересекаются в точке O. Докажите, чтоРешениеПусть точка F делит отрезок BC в отношении CF : FB = 1 : 2; P и Q — точки пересечения отрезка AF с BD и CE соответственно. Ясно, что треугольник OPQ правильный. Используя результат задачи 1.3, легко проверить, что AP : PF = 3 : 4 и AQ : QF = 6 : 1. Следовательно, AP : PQ : QF = 3 : 3 : 1, а значит, AP = PQ = OP. ПоэтомуИсточники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|