|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) На окружности фиксированы точки A и B, а точки A1 и B1 движутся по той же окружности так, что величина дуги A1B1 остается постоянной; M — точка пересечения прямых AA1 и BB1. Найдите ГМТ M. б) В окружность вписаны треугольники ABC и A1B1C1, причем треугольник ABC неподвижен, а треугольник A1B1C1 вращается. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке не более чем при одном положении треугольника A1B1C1. |
Задача 87233
УсловиеДокажите, что две различные плоскости, перпендикулярные одной и той же прямой, параллельны.РешениеПусть различные плоскости α и β перпендикулярны прямой h . Поскольку через точку проходит единственная плоскость, перпендикулярная данной прямой, плоскости α и β пересекают прямую h в различных точках A и B . Предположим, что эти плоскости имеют общую точку M . Проведём плоскость γ через прямую h и точку M . Поскольку прямая h перпендикулярна плоскостям α и β , проведённая плоскость пересекает плоскости α и β по прямым MA и MB , перпендикулярным прямой h . Таким образом, в плоскости γ через точку M проведены две различные прямые, перпендикулярные одной и той же прямой h . Что невозможно. Следовательно, плоскости α и β не имеют общих точек, т.е. параллельны.Источники и прецеденты использования
|
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|