ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка G — центр шара, вписанного в правильный тетраэдр ABCD. Прямая OG, соединяющая G с точкой O, лежащей внутри тетраэдра, пересекает плоскости граней в точках A', B', C', D'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ + $\displaystyle {\frac{OD'}{GD'}}$ = 4.

   Решение

Задача 54983
Темы:    [ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Точки P и Q расположены на стороне BC треугольника ABC, причём  BP : PC = 1 : 2  и  BQ : QC = 4 : 1.  Точка R расположена на продолжении стороны AC, а точка L является серединой той же стороны. При этом C принадлежит отрезку AR и  AC : CR = 2 : 1.  Найдите отношение площади четырёхугольника PQST к площади треугольника ABC, если S и T являются точками пересечения прямой BR с прямыми LQ и AP соответственно.


Подсказка

См. задачу 54980.


Ответ

9/40.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3039

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .