ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

На концах клетчатой полоски 1 × 20 стоит по шашке. За ход разрешается сдвинуть любую шашку в направлении другой на одну или на две клетки. Перепрыгивать шашкой через шашку нельзя. Проигрывает тот, кто не может сделать ход.

Вниз   Решение


Дана правильная четырёхугольная пирамида SABCD ( S – вершина) со стороной основания a и боковым ребром b ( b > a ). Сфера с центром в точке O лежит над плоскостью основания ABCD , касается этой плоскости в точке A и, кроме того, касается бокового ребра SB . Найдите объём пирамиды OABCD .

ВверхВниз   Решение


Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что  $ \angle$PAK = $ \angle$MAQ.

ВверхВниз   Решение


Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg $ {\dfrac{x}{2}}$ рационально.

ВверхВниз   Решение


Все плоские углы трёхгранного угла равны 90o . Найдите углы между биссектрисами плоских углов.

ВверхВниз   Решение


В треугольнике ABC угол A равен 120°, точка D лежит на биссектрисе угла A, и  AD = AB + AC.  Докажите, что треугольник DBC – равносторонний.

ВверхВниз   Решение


Пусть E, F, G и H — середины сторон AB, BC, CD и DA четырехугольника ABCD. Докажите, что SABCD $ \leq$ EG . HF$ \le$(AB + CD)(AD + BC)/4.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность, M – точка пересечения его диагоналей, O1 и O2 – центры вписанных окружностей треугольников ABM и CMD соответственно, K – середина дуги AD, не содержащей точек B и C,  ∠O1KO2 = 60°,  KO1 = 10.  Найдите O1O2.

ВверхВниз   Решение


Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 122]      



Задача 108029

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

При каком отношении оснований трапеции существует прямая, на которой шесть точек пересечения с диагоналями, боковыми сторонами и продолжениями оснований трапеции высекают пять равных отрезков?

Прислать комментарий     Решение

Задача 111661

Темы:   [ Две пары подобных треугольников ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

На сторонах AB и AC треугольника ABC расположены точки K и L, причём  AK : KB = 4 : 7  и  AL : LC = 3 : 2.  Прямая KL пересекает продолжение стороны BC в точке M. Найдите отношение  CM : BC.

Прислать комментарий     Решение

Задача 111662

Темы:   [ Две пары подобных треугольников ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Точки M и N расположены соответственно на сторонах BC и AB треугольника ABC, причём  CM : MB = 1 : 5  и  BN : AN = 1 : 3.  Прямая MN пересекает продолжение стороны AC в точке K. Найдите отношение  CK : AC.

Прислать комментарий     Решение

Задача 53748

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Через точку пересечения диагоналей трапеции проведена прямая, параллельная основаниям.
Найдите длину отрезка этой прямой, заключённого внутри трапеции, если основания трапеции равны a и b.

Прислать комментарий     Решение

Задача 53764

Темы:   [ Две пары подобных треугольников ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 8,9

Точки K и M лежат на сторонах AB и BC треугольника ABC, причём  AK : BK = 3 : 2,  BM : MC = 3 : 1.  Через точку B проведена прямая l, параллельная AC. Прямая KM пересекает прямую l в точке P, а прямую AC в точке N. Найдите BP и CN, если  AC = a.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .