ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны два набора векторов a1,...,an и  b1,...,bm, причем сумма длин проекций векторов первого набора на любую прямую не больше суммы длин проекций векторов второго набора на ту же прямую. Докажите, что сумма длин векторов первого набора не больше суммы длин векторов второго набора.

   Решение

Задача 57751
Темы:    [ Теорема о группировке масс ]
[ Выпуклые многоугольники ]
[ Четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Пусть ABCD — выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и DA. Докажите, что точка пересечения отрезков KM и LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей.

Решение

Поместим в вершины четырехугольника ABCD единичные массы. Пусть O — центр масс этой системы точек. Достаточно доказать, что точка O является серединой отрезков KM и LN и серединой отрезка, соединяющего середины диагоналей. Ясно, что K — центр масс точек A и B, M — центр масс точек C и D. Поэтому точка O является центром масс точек K и M с массами 2, т. е. O — середина отрезка KM. Аналогично O — середина отрезка LN. Рассматривая центры масс пар точек (A, C) и (B, D) (т. е. середины диагоналей), получаем, что точка O является серединой отрезка, соединяющего середины диагоналей.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 14
Название Центр масс
Тема Центр масс
параграф
Номер 2
Название Теорема о группировке масс
Тема Теорема о группировке масс
задача
Номер 14.005

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .