ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется много карточек, на каждой из которых записано натуральное число от 1 до n. Известно, что сумма чисел на всех карточках равна nk, где k – целое число. Докажите, что карточки можно разложить на k групп так, чтобы в каждой группе сумма чисел, записанных на карточках, равнялась n!.

   Решение

Задача 66244
Темы:    [ Вписанные и описанные окружности ]
[ Прямая Симсона ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Автор: Нилов Ф.

Дан треугольник ABC,  O – центр его описанной окружности. Проекции точек D и X на стороны треугольника лежат на прямых l и L, причём
l || XO.  Докажите, что прямая L образует равные углы с прямыми AB и CD.


Решение

Из условия следует, что точки D и X лежат на описанной окружности треугольника ABC, а прямые l и L являются их прямыми Симсона. Проведём хорды CC', DD' и XX', параллельные AB. Согласно задаче 56945 прямая l, а значит, и радиус OX перпендикулярны CD', а  LCX'.  Поэтому утверждение задачи равносильно равенству дуг X'D и XC. Но  ⌣X'D = ⌣XD' = ⌣.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2015
тур
задача
Номер 17

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .