ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадрат 3×3 заполнен цифрами так, как показано на рисунке слева. Разрешается ходить по клеткам этого квадрата, переходя из клетки в соседнюю (по стороне), но ни в какую клетку не разрешается попадать дважды.


Петя прошёл, как показано на рисунке справа, и выписал по порядку все цифры, встретившиеся по пути, – получилось число 84937561. Нарисуйте другой путь так, чтобы получилось число побольше (чем больше, тем лучше).

   Решение

Задача 53196
Темы:    [ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В окружность вписан равнобедренный треугольник с основанием a и углом при основании $ \alpha$. Кроме того, построена вторая окружность, касающаяся первой окружности и основания треугольника, причём точка касания является серединой основания. Найдите радиус второй окружности. Если решение не единственное, рассмотрите все случаи.


Подсказка

Диаметр одной из искомых окружностей — высота данного треугольника, а другой — разность между диаметром описанной окружности и диаметром первой искомой окружности.


Решение

Пусть CK — диаметр окружности, описанной около равнобедренного треугольника ABC (AC = BC, AB = a, $ \angle$A = $ \angle$B = $ \alpha$). Тогда середина M основания AB принадлежит этому диаметру, а CM и MK — диаметры искомых окружностей.

Пусть r и x — радиусы искомых окружностей. Тогда

r = $\displaystyle {\textstyle\frac{1}{2}}$CM = $\displaystyle {\textstyle\frac{1}{2}}$AM . tg$\displaystyle \alpha$ = $\displaystyle {\frac{a}{4}}$tg$\displaystyle \alpha$,

x = $\displaystyle {\textstyle\frac{1}{2}}$MK = $\displaystyle {\textstyle\frac{1}{2}}$AM . ctg$\displaystyle \angle$AKM = $\displaystyle {\frac{a}{4}}$ctg$\displaystyle \alpha$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 891

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .