ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В центре квадрата сидит заяц, а в каждом из четырёх углов по одному волку. Может ли заяц выбежать из квадрата, если волки могут бегать только по сторонам квадрата с максимальной скоростью в 1,4 раза большей, чем максимальная скорость зайца?

Вниз   Решение


У числа 21970 зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые цифры.

Вверх   Решение

Задача 76501
Тема:    [ Разложение на множители ]
Сложность: 2+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Разделить  a128b128  на  (a + b)(a² + b²)(a4 + b4)(a8 + b8)(a16 + b16)(a32 + b32)(a64 + b64).


Ответ

a – b.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 8
Год 1945
вариант
Класс 7,8
Тур 1
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .