ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что отрезок, соединяющий центры вписанной и вневписанной окружностей треугольника, делится описанной окружностью пополам.

Вниз   Решение


Дан треугольник ABC. Пусть A1, B1, C1 — точки пересечения прямых AS, BS, CS соответственно со сторонами BC, CA, AB треугольника, где S — произвольная внутренняя точка треугольника ABC. Доказать, что, по крайней мере, в одном из полученных четырёхугольников AB1SC1, C1SA1B, A1SB1C углы при вершинах C1, B1, или C1, A1, или A1, B1 &8212; одновременно оба неострые.

Вверх   Решение

Задача 56526
Темы:    [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Вписанный угол равен половине центрального ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Точки A1, B1 и C1 симметричны центру описанной окружности треугольника ABC относительно его сторон.
Докажите, что треугольники ABC и A1B1C1 равны.


Подсказка

Треугольники AB1C1 и OCB равны по двум сторонам и углу между ними (O – центр описанной окружности).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 7
Название Задачи для самостоятельного решения
Тема Подобные треугольники (прочее)
задача
Номер 01.070

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .