ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 101873
Темы:    [ Описанные четырехугольники ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

В четырехугольник ABCD можно вписать окружность. Пусть K — точка пересечения его диагоналей. Известно, что AB > BC > BK, BK = $ \sqrt{14}$ + 2, косинус угла BCK равен ( $ \sqrt{14}$ - 2) /6, а периметр треугольника BKC равен 2$ \sqrt{14}$ + 6. Найдите DC.


Ответ

6.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3963

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .