Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?

Вниз   Решение


Четыре натуральных числа таковы, что квадрат суммы любых двух из них делится на произведение двух оставшихся.
Докажите, что по крайней мере три из этих чисел равны между собой.

ВверхВниз   Решение


В сундуке лежали два колпака белого цвета и три черного. В темную комнату завели трех мудрецов и надели на них какие-то колпаки из сундука. Потом вывели в другую комнату. Они не видят, какого цвета колпак на них, но видят колпакки других. Через некоторое время один из них догадался, какого цвета на нем колпак. Как? Какого цвета был колпак?

ВверхВниз   Решение


По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
  а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
  б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.

ВверхВниз   Решение


Дан треугольник ABC и линейка, на которой отмечены два отрезка, равные AC и BC . Пользуясь только этой линейкой, найдите центр вписанной окружности треугольника, образованного средними линиями ABC .

ВверхВниз   Решение


Автор: Храбров А.

Дан многочлен  P(x) = a0xn + a1xn–1 + ... + an–1x + an.  Положим  m = min {a0, a0 + a1, ..., a0 + a1 + ... + an}.
Докажите, что  P(x) ≥ mxn  при  x ≥ 1.

ВверхВниз   Решение


В каждой клетке шахматной доски сидят по два таракана. В некоторый момент времени каждый таракан переползает на соседнюю (по стороне) клетку, причём тараканы, сидевшие в одной клетке, переползают в разные клетки. Какое наибольшее количество клеток доски может после этого остаться свободным?

ВверхВниз   Решение


Через центр сферы радиуса R проведены три попарно перпендикулярные плоскости. Найдите радиус сферы, касающейся всех этих плоскостей и данной сферы.

ВверхВниз   Решение


Точка O расположена на стороне AC треугольника ABC так, что  CO : CA = 2 : 3.  При повороте этого треугольника на некоторый угол вокруг точки O вершина B переходит в вершину C, а вершина A – в точку D, лежащую на стороне AB. Найдите отношение площадей треугольников BOD и ABC.

Вверх   Решение

Задача 102312
Темы:    [ Поворот ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Точка O расположена на стороне AC треугольника ABC так, что  CO : CA = 2 : 3.  При повороте этого треугольника на некоторый угол вокруг точки O вершина B переходит в вершину C, а вершина A – в точку D, лежащую на стороне AB. Найдите отношение площадей треугольников BOD и ABC.


Подсказка

Равнобедренные треугольники BOC, AOD и ABC подобны. Отсюда следует, что D – середина AB.


Ответ

1 : 6.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3739

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .