Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой?

Вниз   Решение


Две окружности w1 и w2 пересекаются в точках A и B. К ним через точку A проводятся касательные l1 и l2 (соответственно). Перпендикуляры, опущенные из точки B на l2 и l1, вторично пересекают окружности w1 и w2 соответственно в точках K и N. Докажите, что точки K, A и N лежат на одной прямой.

ВверхВниз   Решение


Автор: Ботин Д.А.

Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?

Вверх   Решение

Задача 103781
Тема:    [ Обход графов ]
Сложность: 2
Классы: 6,7
Из корзины
Прислать комментарий

Условие

Автор: Ботин Д.А.

Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?


Решение

Рассмотрим шесть улиц, выходящих из центра города в разных направлениях (то есть шесть отрезков с общим началом и без других общих точек). Пешеход может, выйдя из центра, пройти каждую улицу туда-обратно. Но, очевидно, пройти по каждой улице ровно один раз невозможно.


Ответ

Могло.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 1994
класс
1
Класс 6
задача
Номер 8

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .