Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Метро города Урюпинска состоит из трёх линий и имеет по крайней мере две конечные станции и по крайней мере два пересадочных узла, причём ни одна из конечных станций не является пересадочной. С каждой линии на любую из остальных можно перейти по крайней мере в двух местах. Нарисуйте пример такой схемы метро, если известно, что это можно сделать, не отрывая карандаша от бумаги и не проводя два раза один и тот же отрезок.

Вниз   Решение


Электрик был вызван для ремонта гирлянды из четырёх соединённых последовательно лампочек, одна из которых перегорела. На вывинчивание любой лампочки из гирлянды уходит 10 секунд, на завинчивание -- 10 секунд. Время, которое тратится на другие действия, мало. За какое наименьшее время электрик заведомо может найти перегоревшую лампочку, если у него есть одна запасная лампочка?

ВверхВниз   Решение


С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат соответственно на трёх данных концентрических окружностях.

ВверхВниз   Решение


Автор: Фольклор

В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?

ВверхВниз   Решение


Вифсла, Тофсла и Хемуль играли в снежки. Первый снежок бросил Тофсла. Затем в ответ на каждый попавший в него снежок Вифсла бросал 6 снежков, Хемуль – 5, а Тофсла – 4. Через некоторое время игра закончилась. Найдите, в кого сколько снежков попало, если мимо цели пролетели 13 снежков. (В себя самого снежками не кидаются и один снежок не может попасть в двоих.)

Вверх   Решение

Задача 103862
Темы:    [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 6,7
Из корзины
Прислать комментарий

Условие

Вифсла, Тофсла и Хемуль играли в снежки. Первый снежок бросил Тофсла. Затем в ответ на каждый попавший в него снежок Вифсла бросал 6 снежков, Хемуль – 5, а Тофсла – 4. Через некоторое время игра закончилась. Найдите, в кого сколько снежков попало, если мимо цели пролетели 13 снежков. (В себя самого снежками не кидаются и один снежок не может попасть в двоих.)


Решение

  Если в Вифслу, Тофслу и Хемуля попали x, y и z снежков соответственно, то всего было брошено  13 + x + y + z  снежков). С другой стороны, Вифсла бросил 6x, Хемуль – 5y, а Тофсла –  4z + 1  снежков (вместе с первым снежком). Получаем уравнение:  6x + 5y + 4z + 1 = 13 + x + y + z,  откуда
5x + 4y + 3z = 12.  Отсюда видно, что  x ≤ 2,  z ≤ 4.
  Записав уравнение в виде  4(x + y + z) + (x – z) = 12,  видим, что  x – z  делится на 4. Учитывая ограничения на x и z получаем два варианта.
  1)  x = z.  Тогда  8x + 4y = 12,  2x + y = 3,  откуда  (x, y) = (1, 1)  или  (0, 3).  Но во втором случае в Тофслу некому было попадать.
  2)  x = 0,  z = 4.  Тогда  y = 0.  Этот вариант не подходит по аналогичным соображениям.


Ответ

В каждого попали по одному разу.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 2001
класс
1
Класс 6
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .