Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

Вниз   Решение


Андрей Степанович каждый день выпивает столько капель валерьянки, сколько в этом месяце уже было солнечных дней (включая текущий день). Иван Петрович каждый пасмурный день выпивает количество капель валерьянки, равное номеру дня в месяце, а в солнечные дни не пьет. Докажите, что если в апреле ровно половина дней будет пасмурные, а другая половина – солнечные, то Андрей Степанович и Иван Петрович выпьют за месяц поровну валерьянки.

ВверхВниз   Решение


Двое играющих по очереди красят стороны n-угольника. Первый может покрасить сторону, которая граничит с нулём или двумя покрашенными сторонами, второй – сторону, которая граничит с одной покрашенной стороной. Проигрывает тот, кто не может сделать хода. При каких n второй может выиграть, как бы ни играл первый?

ВверхВниз   Решение


На бесконечной ленте выписаны в ряд числа. Первой идёт единица, а каждое следующее число получается из предыдущего прибавлением к нему наименьшей ненулевой цифры его десятичной записи. Сколько знаков в десятичной записи числа, стоящего в этом ряду на 9·10001000-м месте?

ВверхВниз   Решение


Кузнечик умеет прыгать только ровно на 50 см. Он хочет обойти 8 точек, отмеченных на рисунке (сторона клетки равна 10 см). Какое наименьшее количество прыжков ему придётся сделать? (Разрешается посещать и другие точки плоскости, в том числе не узлы сетки. Начинать и заканчивать можно в любых точках.)

ВверхВниз   Решение


Двое играют в следующую игру: первый выписывает в ряд по своему желанию буквы А или Б (слева направо, одну за другой; по одной букве за ход), а второй после каждого хода первого меняет местами любые две из выписанных букв или ничего не меняет (это тоже считается ходом). После того, как оба игрока сделают по 1999 ходов, игра заканчивается. Может ли второй играть так, чтобы при любых действиях первого игрока в результате получился палиндром (то есть слово, которое читается одинаково слева направо и справа налево)?

ВверхВниз   Решение


Может ли среднее арифметическое 35 целых чисел равняться 6,35?

ВверхВниз   Решение


Разбойники Хапок и Глазок делят кучу из 100 монет. Хапок захватывает из кучи пригоршню монет, а Глазок, глядя на пригоршню, решает, кому из двоих она достается. Так продолжается, пока кто-то из них не получит девять пригоршней, после чего другой забирает все оставшиеся монеты (дележ может закончиться и тем, что монеты будут разделены прежде, чем кто-то получит девять пригоршней). Хапок может захватить в пригоршню сколько угодно монет. Какое наибольшее число монет он может гарантировать себе независимо от действий Глазка?

ВверхВниз   Решение


Автор: Романов Ф.

На клетчатой бумаге проведена диагональ прямоугольника 1×4.
Покажите, как, пользуясь только линейкой без делений, разделить этот отрезок на три равные части.

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD, в котором  ∠DAB = 90°.  Пусть M – середина стороны BC. Оказалось. что  ∠ADC = ∠BAM.
Докажите, что  ∠ADB = ∠CAM.

ВверхВниз   Решение


а) На доске выписаны числа 1, 2, 4, 8, 16, 32, 64, 128. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После семи таких операций на доске будет только одно число. Может ли оно равняться 97?
б) На доске выписаны числа 1, 21, 2², 2³, ..., 210. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После нескольких таких операций на доске будет только одно число. Чему оно может быть равно?

ВверхВниз   Решение


а) В таблицу 2×n (где  n > 2)  вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.
б) В таблицу 100×100 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?

ВверхВниз   Решение


Разрежьте данный квадрат по сторонам клеток на четыре части так, чтобы все части были одинакового размера и одинаковой формы и чтобы каждая часть содержала по одному кружку и по одной звёздочке.

Вверх   Решение

Задача 107707
Темы:    [ Геометрия на клетчатой бумаге ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Разрежьте данный квадрат по сторонам клеток на четыре части так, чтобы все части были одинакового размера и одинаковой формы и чтобы каждая часть содержала по одному кружку и по одной звёздочке.

Решение

Очевидно, между двумя соседними клетками с одинаковыми значками (кружками или звёздочками) должен проходить разрез (по условию такие значки должны находиться в разных кусках). После того, как на рисунке будут отмечены все такие разрезы, окончательное решения придумать совсем просто.

Ответ

Один из возможных способов разрезания указан на рисунке.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
номер/год
Год 2001
Название конкурс по математике
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .