ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 107763
Темы:    [ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

D – точка на стороне BC треугольника ABC. B треугольники ABD, ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от BC), пересекающая AD в точке K. Докажите, что длина отрезка AK не зависит от положения точки D на BC.


Решение

  Обозначим точки касания, как показано на рисунке.

  Заметим, что  AB1 = AP,  AC1 = AQ,  KM = KP,  KN = KQ.  Кроме того,  MN = EF  – отрезки общих касательных к окружностям. Поэтому
    2AK = (AP – KP) + (AQ – KQ) = AP + AQ – MN = AB1 + AC1EF = AB – BB1 + AC – CC1 – (BCBECF) = AB + AC – BC.

Замечания

5 баллов

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4278
олимпиада
Название Московская математическая олимпиада
год
Номер 57
Год 1994
вариант
Класс 10
задача
Номер 4
олимпиада
Название Турнир городов
Турнир
Номер 15
Дата 1993/1994
вариант
Вариант весенний тур, основной вариант, 10-11 класс
Задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .