Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Сонкин М.

Точки O1 и O2 – центры описанной и вписанной окружностей равнобедренного треугольника ABC  (AB = BC).  Описанные окружности треугольников ABC и O1O2A, пересекаются в точках A и D. Докажите, что прямая BD касается описанной окружности треугольника O1O2A.

Вниз   Решение


На большей стороне AC треугольника ABC взята точка N так, что серединные перпендикуляры к отрезкам AN и NC пересекают стороны AB и BC в точках K и M соответственно. Докажите, что центр O описанной окружности треугольника ABC лежит на описанной окружности треугольника KBM.

ВверхВниз   Решение


В первый день Маша собрала на 25% грибов меньше, чем Вася, а во второй – на 20% больше, чем Вася. За два дня Маша собрала грибов на 10% больше, чем Вася. Какое наименьшее количество грибов они могли собрать вместе?

ВверхВниз   Решение


Автор: Сонкин М.

Окружность, вписанная в четырёхугольник ABCD , касается его сторон DA , AB , BC и CD в точках K , L , M и N соответственно. Пусть S1 , S2 , S3 и S4 – окружности, вписанные в треугольники AKL , BLM , CMN и DNK соответственно. К окружностям S1 и S2 , S2 и S3 , S3 и S4 , S4 и S1 проведены общие касательные, отличные от сторон четырёхугольника ABCD . Докажите, что четырёхугольник, образованный этими четырьмя касательными, – ромб.

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если  AB = DE,  то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.

ВверхВниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

Вверх   Решение

Задача 108184
Темы:    [ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.


Решение

  Если данный треугольник равносторонний (точки O и I совпадают), то утверждение очевидно.
  Проведём высоту CE. Пусть точка O лежит между точками I и C  (∠B > 60°),  а прямые OD и BI пересекаются в точке K. Положим  ∠B = ∠A = 2α.  Тогда  ∠EBI = ∠DBI = α,  BIE = 90° – α = ∠BDK,  ∠BIO = 180° – ∠BIE = 90° + α.

  Сумма противоположных углов BIO и BDO четырёхугольника KDBO равна 180°, то есть он – вписанный. Вписанные углы BDI и BOI его описанной окружности равны. Кроме того, BOI – внешний угол равнобедренного треугольника BOC. Значит,  ∠BDI = ∠BOI = 2∠BCE = 180° – 4α = ∠DCA.  Следовательно, DI || AC .
  Случай, когда точка I лежит между точками O и C  (∠B < 60°)  разбирается аналогично.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6531
олимпиада
Название Всероссийская олимпиада по математике
год
Год 1996
Этап
Вариант 5
Класс
Класс 9
задача
Номер 96.5.9.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .