ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108631
Темы:    [ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC точка D лежит на стороне AC, углы ABD и BCD равны,  AB = CD,  AE – биссектриса угла A. Докажите, что  ED || AB.


Решение

  Треугольники ABD и ACB подобны по двум углам. Значит, CA : AB = AB : AD = CD : AD.  С другой стороны, по свойству биссектрисы треугольника
CA : AB = CE : BE.  Поэтому  CD : AD = CE: BE.
  Отсюда и из теоремы о пропорциональных отрезках следует, что  DE || AB.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4447

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .