ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108769
Темы:    [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол 45o . Найдите площадь боковой поверхности пирамиды.

Решение



Пусть ABCDP – данная правильная четырёхугольная пирамида с вершиной P , AB = BC = CD = AD = a , M – центр квадрата ABCD , K – середина отрезка AB , S – площадь боковой поверхности пирамиды. Поскольку PK AB и MK AB , угол PKM – линейный угол двугранного угла между плоскостью боковой грани ABP и плоскостью основания пирамиды. По условию PKM = 45o . Апофему PK пирамиды находим из прямоугольного треугольника PKM :

PK = = = .

Боковые грани правильной пирамиды – равные равнобедренные треугольники, поэтому
S = SΔ ABP + SΔ BCP + SΔ CDP + SΔ ADP =


= 4SΔ ABP = 4· AB· PK = 2 = a2.



Пусть ABCDP – данная правильная четырёхугольная пирамида с вершиной P , AB = BC = CD = AD = a , M – центр квадрата ABCD , K – середина отрезка AB , S – площадь боковой поверхности пирамиды. Поскольку PK AB и MK AB , угол PKM – линейный угол двугранного угла между плоскостью боковой грани ABP и плоскостью основания пирамиды. По условию PKM = 45o . Ортогональная проекция боковой поверхности пирамиды на плоскость основания есть квадрат ABCD , поэтому
S = = = a2.


Ответ

a2 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 7012

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .