ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны две окружности, длина каждой из которых
равна 100 см. На одной из них отмечено 100 точек, а на
другой — несколько дуг, сумма длин которых меньше 1 см.
Докажите, что эти окружности можно совместить так, чтобы
ни одна отмеченная точка не попала на отмеченную дугу.
|
Задача 109486
УсловиеВ основании A1A2...An
пирамиды SA1A2...An лежит точка O, причём SA1 = SA2 = ... = SAn и ∠SA1O = ∠SA2O = ... = ∠SAnO. Решение По теореме синусов для треугольников SAkO (k = 1, 2, ..., n) ОтветПри n = 5. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке