Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

На прямой отметили точки $X_1, \ldots, X_{10}$ (именно в таком порядке) и построили на отрезках $X_1X_2$, $X_2X_3$, ..., $X_9X_{10}$ как на основаниях равнобедренные треугольники с углом $\alpha$ при вершинах. Оказалось, что все эти вершины лежат на полуокружности с диаметром $X_1X_{10}$. Найдите $\alpha$.

Вниз   Решение


Для всякого ли выпуклого четырёхугольника найдётся окружность, пересекающая каждую его сторону в двух внутренних точках?

ВверхВниз   Решение


Автор: Фольклор

На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что  ВС1 = С1А1 = А1В1 = В1С.
Докажите, что точка пересечения высот треугольника С1А1В1 лежит на биссектрисе угла А.

ВверхВниз   Решение


Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).

ВверхВниз   Решение


При повороте треугольника KLM на угол 120° вокруг точки Q, лежащей на стороне KL, вершина M переходит в вершину K, а вершина L – в точку N, лежащую на продолжении стороны LM за точку M. Найдите отношение площадей треугольников KLM и LNQ.

ВверхВниз   Решение


Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n.

Вверх   Решение

Задача 109529
Темы:    [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n.


Решение

  Проверка показывает, что из чисел  n = 1, 2, 3, 4, 5  подходит только  n = 3.
  Докажем, что при  n ≥ 6  сумма цифр числа 5n меньше чем 2n. Действительно, число 5n не более чем n-значно, поэтому сумма его цифр не превосходит 9n. С другой стороны,  2n ≥ 9n.   В самом деле, при  n = 6  оно верно, а при увеличении n на единицу правая часть этого неравенства увеличивается на 9, а левая – не менее чем на 64.


Ответ

n = 3.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1993
Этап
Вариант 4
класс
Класс 11
задача
Номер 93.4.11.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .