Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Точка M находится внутри диаметра AB окружности и отлична от центра окружности. По одну сторону от этого диаметра на окружности взяты произвольные различные точки P и Q , причём отрезки PM и QM образуют равные углы с диаметром. Докажите, что все прямые PQ проходят через одну точку.

Вниз   Решение


Первая окружность с центром в точке A касается сторон угла KOL в точках K и L. Вторая окружность с центром в точке B касается отрезка OK, луча LK и продолжения стороны угла OL за точку O. Известно, что отношение радиуса первой окружности к радиусу второй окружности равно $ {\frac{20}{9}}$. Найдите отношение отрезков OB и OA.

ВверхВниз   Решение


Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
  1) проверять, равны ли выбранные два числа,
  2) складывать выбранные числа,
  3) по выбранным числам a и b находить корни уравнения  x² + ax + b = 0,  а если корней нет, выдавать сообщение об этом.
Результаты всех действий заносятся в память. Первоначально в памяти записано одно число x. Как с помощью МК-97 узнать, равно ли это число единице?

Вверх   Решение

Задача 109913
Темы:    [ Исследование квадратного трехчлена ]
[ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
  1) проверять, равны ли выбранные два числа,
  2) складывать выбранные числа,
  3) по выбранным числам a и b находить корни уравнения  x² + ax + b = 0,  а если корней нет, выдавать сообщение об этом.
Результаты всех действий заносятся в память. Первоначально в памяти записано одно число x. Как с помощью МК-97 узнать, равно ли это число единице?


Решение

Сложением x с самим собой получаем 2x. Сравниваем x и 2x. Если они равны, то  x = 0.  В противном случае ищем корни уравнения  y² + 2xy + x = 0.  Дискриминант этого уравнеия равен  4(x² – x),  поэтому корни равны тогда и только тогда, когда  x = 1.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1997
Этап
Вариант 4
Класс
Класс 10
задача
Номер 97.4.10.1
олимпиада
Название Всероссийская олимпиада по математике
год
Год 1997
Этап
Вариант 4
Класс
Класс 11
задача
Номер 97.4.11.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .