ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109917
Темы:    [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

Автор: Фомин А.

Дан набор, состоящий из таких 100 различных чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе положительно.


Решение

Как и в задаче 109925, получаем, что числа в наборе разбиваются на пары  {a, – a}.  Числа различны, поэтому нуль не входит в набор. Значит, среди этих чисел 50 положительных и 50 отрицательных, следовательно, их произведение положительно.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1997
Этап
Вариант 4
Класс
Класс 10
задача
Номер 97.4.10.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .