Страница: 1 [Всего задач: 3]
На двух сторонах AB и BC правильного 2n-угольника взято по
точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.
|
|
Сложность: 4 Классы: 7,8,9,10
|
Дан набор, состоящий из таких 100 различных чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе положительно.
|
|
Сложность: 4 Классы: 7,8,9
|
Дан набор, состоящий из таких 1997 чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе равно 0.
Страница: 1 [Всего задач: 3]