ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110007
Условие
Каждый голосующий на выборах вносит в избирательный бюллетень фамилии n
кандидатов. На избирательном участке находится n+1 урна. После выборов
выяснилось, что в каждой урне лежит по крайней мере один бюллетень и
при всяком выборе (n+1) -го бюллетеня по одному из каждой урны
найдется кандидат,
фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что
по крайней мере в одной урне все бюллетени содержат фамилию одного и того же
кандидата.
РешениеВозьмем произвольный бюллетень из (n+1) -й урны. Пронумеруем кандидатов, фамилии которых встречаются в этом бюллетене. Предположим, что требуемое в задаче не выполнено. Тогда в k -й урне ( k=1 , n ) найдется бюллетень, не содержащий фамилии k -го кандидата. Набор этих бюллетеней вместе со взятым вначале бюллетенем из (n+1) -й урны противоречит условию задачи. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке