ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110108
Тема:    [ Теория игр (прочее) ]
Сложность: 4-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?

Решение

Занумеруем коробки: 1,..,11 и будем обозначать ход номером той коробки, куда мы не клали монету. Можно считать, что первый игрок начал игру ходом 1. Чтобы победить, второму надо, независимо от игры первого, сделать ходы 2,..,11 . Этими десятью ходами вместе с ходом первого в каждую коробку будет положено по 10 монет. Кроме того, найдется коробка (назовем ее A ), в которую первый каждым своим ходом со 2 по 11 клал по монете. Тем самым, после 11 хода первого в коробке A окажется 20 монет, и ни в какой коробке не окажется больше. Второй игрок своим 11-м ходом должен положить монеты так, чтобы в коробку A попала монета. Тем самым, он выигрывает.

Ответ

Выигрывает второй.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2002
Этап
Вариант 4
Класс
Класс 8
задача
Номер 02.4.8.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .