ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110176
Темы:    [ Свойства симметрий и осей симметрии ]
[ Площадь четырехугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Тригонометрические неравенства ]
[ Общие четырехугольники ]
[ Неравенства с площадями ]
Сложность: 5
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Каждую вершину выпуклого четырехугольника площади S отразили симметрично относительно диагонали, не содержащей эту вершину. Обозначим площадь получившегося четырехугольника через S' . Докажите, что <3 .

Решение

При указанном отражении сохраняются длины диагоналей четырехугольника. Пусть острый угол между диагоналями был равен α, тогда после отражения один из углов между диагоналями становится равным либо 3α, либо 3α-π , а поэтому отношение площадей равно || . Используя формулу для синуса тройного угла, получим, =|3-4 sin2α|<3 .

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2005
Этап
Вариант 4
1
Класс
Класс 11
задача
Номер 05.4.11.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .