ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шень А.Х.

В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.

   Решение

Задача 110204
Темы:    [ Биссекторная плоскость ]
[ Гомотетия помогает решить задачу ]
[ Симметрия относительно плоскости ]
[ Параллельность прямых и плоскостей ]
Сложность: 4+
Классы: 10,11
В корзину
Прислать комментарий

Условие

В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .

Решение



Продолжим отрезок AB' до пересечения с плоскостью BCD в точке B'' . Так как плоскости (BCD) и (ACD) симетричны относительно биссекторной плоскости, то AB'=B'B'' . Аналогично по точкам C' и D' строим точки C'' и D'' . При гомотетии с центром A и коэффициентом плоскость (B''C''D'') переходит в плоскость (B'C'D') , поэтому (B'C'D')|| (B''C''D'')=(BCD) , что и требовалось доказать.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2006
Этап
Вариант 4
Класс
Класс 11
задача
Номер 06.4.11.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .