ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110308
УсловиеДва противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся ребра равны c . Найдите радиус описанной сферы.РешениеДостроим данный тетраэдр до параллелепипеда, проведя через противоположные рёбра три пары параллельных плоскостей. Так как противоположные рёбра тетраэдра попарно равны, то диагонали каждой грани полученного параллелепипеда также равны. Поэтому все грани параллелепипеда – прямоугольники. Значит, параллелепипед – прямоугольный. Около него можно описать сферу. Эта сфера проходит через все вершины тетраэдра. Следовательно, задача сводится к нахождению радиуса сферы, описанной около прямоугольного параллелепипеда. Пусть ABCDA1B1C1D1 – полученный прямоугольный параллелепипед, а ACB1D1 – исходный тетраэдр, в которомОбозначим AB = x , AD = y , AA1 = z . Тогда откуда находим, что Пусть R – искомый радиус. Тогда Ответ.Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|