ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110889
Темы:    [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Продолжения медиан AM и BK треугольника ABC пересекают описанную около него окружность в точках E и F соответственно, причём AE:AM=2:1 , BF:BK=3:2 . Найдите углы треугольника ABC .

Решение

Диагонали BC и AE четырёхугольника ABEC точкой пересечения M делятся пополам, значит, этот четырёхугольник – параллелограмм, а т.к. он вписан в окружность, то это прямоугольник. Следовательно, BAC = 90o . Пусть FK=t , BK=2t , AK=KC=x . По теореме о произведениях отрезков пересекающихся хорд AK· KC=BK· KF , или x2=2t· t = 2t2 , откуда x=t . Из прямоугольного треугольника ABK находим, что

sin ABK = = = = ,

поэтому ABK = 45o . Тогда AB=AK=x . Следовательно,
tg ABC = = = 2.



Ответ

90o , arctg 2 , 90o- arctg 2 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 5851

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .