ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115316
Темы:    [ Равнобедренные, вписанные и описанные трапеции ]
[ Четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырёхугольнике ABCD выполняются равенства:  ∠B = ∠C  и  CD = 2AB.  На стороне BC выбрана такая точка X, что  ∠BAX = ∠CDA.
Докажите, что  AX = AD.


Решение

Пусть K – середина стороны CD. Тогда  CK = DK = AB,  а так как  ∠B = ∠C,  то ABCK – равнобедренная трапеция. Значит,  AK || BC  и  ∠AKD = ∠C.  Треугольники ABX и DKA равны по стороне и прилежащим к ней углам, следовательно,  AX = AD.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6320

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .