ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116341
Темы:    [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
[ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Точка M расположена на стороне BC параллелограмма ABCD, причём  BM : MC = 3 : 2.  Отрезки AM и BD пересекаются в точке K. Известно, что площадь параллелограмма равна 1. Найдите площадь четырёхугольника CMKD.


Подсказка

Найдите отношение  BK : KD.


Решение

Из подобия треугольников BKM и DKA находим, что  BK : KD = BM : AD = BM : MC = 3 : 5.  Поэтому  BK : BD = 3 : 8,  а     Следовательно,  SCMKD = SBCD – SBKM = ½ – 9/80 = 31/80.


Ответ

31/80.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2919

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .