ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Четырёхугольник описан около окружности. Докажите, что прямые, соединяющие соседние точки касания и не пересекающиеся в одной из этих точек, пересекаются на продолжении диагонали или параллельны ей. На сторонах параллелограмма внешним образом построены квадраты.
Докажите, что их центры образуют квадрат.
Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа. |
Задача 116595
УсловиеБесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа. РешениеПусть a – один из членов прогрессии, а d – её разность. По условию, числа a(a + d) и a(a + 2d) – также члены прогрессии; значит, их разность имеет вид nd при некотором целом n, то есть ad = nd. Поскольку d > 0, получаем a = n, то есть a – целое число. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке